

Worksheet 1 Understanding Fractions Complete.

Example -

The **whole** is divided into _____4 equal parts.

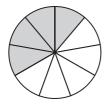
_____1 part is shaded.

_____1 out of _____ parts is shaded.

Fraction shaded = $\frac{1}{4}$

 $\frac{1}{4}$ is read as one-fourth.

The whole is divided into _____ equal parts.


_____ parts are shaded.

_____ out of _____ parts are shaded.

Fraction shaded = _____

Complete.

2.

The whole is divided into _____ equal parts.

_____ parts are shaded.

_____ out of _____ parts are shaded.

Fraction shaded = _____

Write in words.

Example

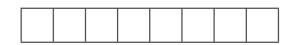
 $\frac{2}{9}$

two-ninths

- 3. $\frac{4}{5}$
- **4.** $\frac{2}{3}$
- **5.** $\frac{3}{10}$

Shade the part(s) to show each fraction.

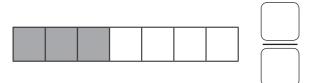
- Example ------


<u>1</u> 5

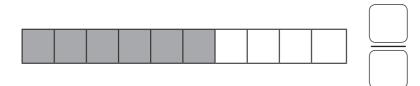
6. $\frac{2}{3}$

<u>5</u>6 **7.**

8.


9.

Write the fraction that shows the fraction part of the diagram.


10.

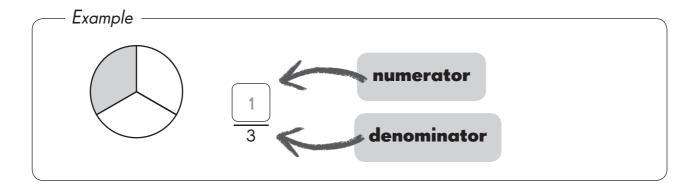
11.

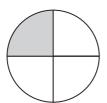
12.

Do the following models correctly show the fractions? Why or why not?

13.

	•
	4
	7
	١,

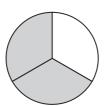

14.


<u>3</u>

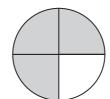
1	5	
	•	

Fill in each missing numerator or denominator.

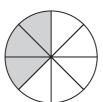
16.


1

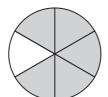
17.


7

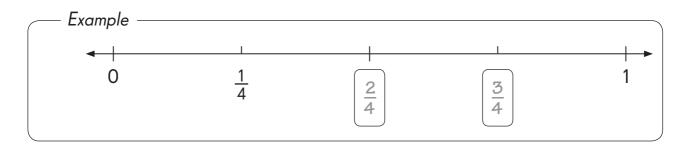
18.

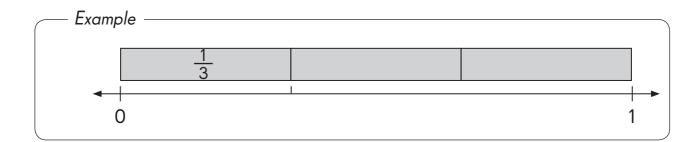

3

19.



3


20.


21.

Complete the number line.

Complete the number line with fraction bars to show one whole.

$$\begin{array}{c|c} \mathbf{24.} & \frac{1}{5} \\ \hline 0 & 1 \\ \end{array}$$

 $\begin{array}{c|c} \mathbf{25.} & \frac{1}{8} \\ \hline 0 & 1 \end{array}$

Worksheet 2 Understanding Equivalent Fractions

Complete each equivalent fraction.

Example -

$$\frac{1}{2}$$

$$\frac{1}{4}$$
 $\frac{1}{4}$

$$\frac{1}{2} = \frac{2}{4}$$

 $\frac{1}{2}$ and $\frac{2}{4}$ are **equivalent fractions**. Equivalent fractions

are two or more fractions that name the same part of a whole.

1.

$$\frac{1}{6}$$
 $\frac{1}{6}$

$$\frac{1}{3} = \frac{\boxed{}}{6}$$

2.

$$\frac{1}{4}$$

$$\frac{1}{12} \left| \frac{1}{12} \right| \frac{1}{12}$$

$$\frac{1}{4} = \frac{1}{12}$$

3.

3.	$\frac{1}{2}$	

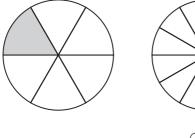
$$\frac{1}{2} =$$

Shade the parts to show the equivalent fractions. Then write the fractions.

– Example –

$$\frac{1}{2} = \boxed{\begin{array}{c} 3 \\ \hline 6 \end{array}} = \boxed{\begin{array}{c} 6 \\ \hline 12 \end{array}}$$

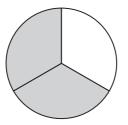
4. $\frac{1}{3}$

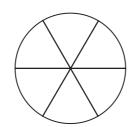

$$\frac{1}{3} = \boxed{\phantom{\frac{1}{3}}} = \boxed{\phantom{\frac{1}{3}}}$$

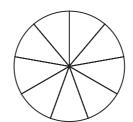
5. \frac{1}{4}

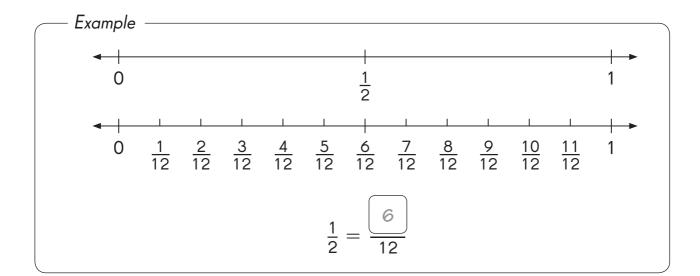
		 	<u> </u>		<u> </u>	

$$\frac{1}{4} = \boxed{\phantom{\frac{1}{2}}} = \boxed{\phantom{\frac{1}{2}}}$$


6.


- =


7.

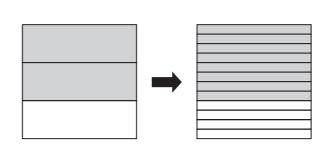

23

=

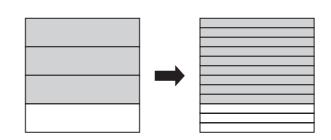
Use the number lines to find equivalent fractions.

8. 0 $\frac{1}{3}$ $\frac{2}{3}$ 1 0 $\frac{1}{6}$ $\frac{2}{6}$ $\frac{3}{6}$ $\frac{4}{6}$ $\frac{5}{6}$ 1

9. 0 $\frac{1}{4}$ $\frac{2}{4}$ $\frac{3}{4}$ 1 0 $\frac{1}{8}$ $\frac{2}{8}$ $\frac{3}{8}$ $\frac{4}{8}$ $\frac{5}{8}$ $\frac{6}{8}$ $\frac{7}{8}$ 1


$$\frac{3}{4} = \frac{}{8}$$

Worksheet 3 More Equivalent Fractions


Find equivalent fractions using multiplication. Fill in the missing numerators and denominators.

1.

2.

3.

Fill in the missing numbers in the boxes.

Example $\frac{5}{10} \leftarrow \frac{1}{2} \frac{6}{12}$

$$\begin{array}{ccc}
 & \times & & \\
 & & \times & \\
 & \frac{1}{2} & = & \frac{5}{10} \\
 & \times & & \times
\end{array}$$

$$\begin{array}{ccc}
\times & & \\
 & \times & \\
 & \times & \\
 & \frac{1}{2} & = & \frac{5}{12} \\
 & \times & & \times \\
 & \times & & \times
\end{array}$$

5.
$$\begin{array}{cccc}
 & \times & & \\
 & & \times & \\
 & \times & &$$

$$\begin{array}{ccc}
\times & & \\
& \times & \\
& \times & \\
\frac{2}{3} & = & \frac{8}{12} \\
& \times & & \\
\times & & \times & \\
\end{array}$$

$$\begin{array}{ccc}
\times & & \\
& \times &$$

Find each equivalent fraction.

Example -

$$\frac{1}{3} = \frac{1 \times 3}{3 \times 3} = \boxed{\frac{3}{9}}$$

6.
$$\frac{2}{5} = \frac{2 \times 2}{5 \times 2} = \frac{2 \times 2}{2 \times 2} = \frac{2 \times 2} = \frac{2 \times 2}{2 \times 2} = \frac{2 \times 2}{2 \times 2} = \frac{2 \times 2}{2 \times 2} = \frac{$$

7.
$$\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{}{}$$

Fill in the missing numbers.

Example -

$$\frac{1}{2} = \frac{1 \times 4}{2 \times 4} = \frac{4}{8}$$

$$8. \qquad \frac{4}{5} = \frac{4 \times \boxed{}}{5 \times \boxed{}} = \frac{8}{\boxed{}}$$

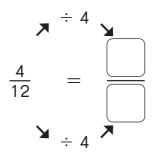
$$9. \qquad \frac{5}{6} = \frac{5 \times \boxed{}}{6 \times \boxed{}} = \frac{\boxed{}}{12}$$

Find each equivalent fraction.

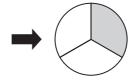
Example
$$\frac{2}{5} = \frac{4}{10}$$

10.
$$\frac{4}{6} = \frac{8}{6}$$

11.
$$\frac{3}{4} = \frac{12}{12}$$

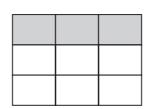

12.
$$\frac{2}{3} = \frac{6}{2}$$

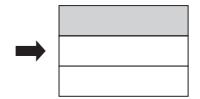
13.
$$\frac{3}{5} = \frac{}{20}$$


Find equivalent fractions using division.

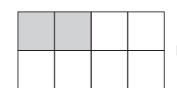
Example $\div 5$ = 1 $\frac{5}{10} = 2$ $\div 5$ $\frac{1}{2} \text{ is the simplest form of } \frac{5}{10}.$ We use division to find a fraction in its simplest form.

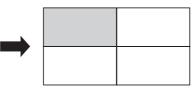
14.





15.


$$\frac{3}{9} = \frac{3}{9}$$



16.

$$\frac{2}{8} = \frac{2}{8}$$

Fill in the missing numbers.

Example $\frac{2}{4} = \frac{2}{4}$

18.
$$\frac{4}{10} = \frac{4}{10}$$

19.
$$\frac{9}{12} = \frac{9}{12}$$

20.
$$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

22.
$$\begin{array}{ccc} & & & \\ & \nearrow & & \\ & & \searrow & \\ & \frac{4}{10} & = & \frac{2}{10} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$$

23.
$$\frac{3}{6} = \frac{3 \div 3}{6 \div 3} = \boxed{}$$

24.
$$\frac{10}{12} = \frac{10 \div 2}{12 \div 2} = \frac{}{}$$

25.
$$\frac{2}{8} = \frac{2 \div 2}{8 \div 2} = \frac{2}{8}$$

26.
$$\frac{8}{10} = \frac{8 \div \boxed{}}{10 \div \boxed{}} = \frac{4}{\boxed{}}$$

Write each fraction in simplest form.

- Example -

$$\frac{8}{12} = \boxed{\begin{array}{c} 4 \\ 6 \end{array}} = \boxed{\begin{array}{c} 2 \\ 3 \end{array}}$$

 $\frac{4}{6}$ is not in simplest form because you can continue to divide the numerator and denominator of $\frac{4}{6}$ by the same number.

27.
$$\frac{12}{18} = \frac{12}{18}$$

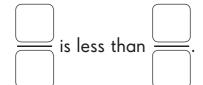
28.
$$\frac{4}{8} = \frac{}{}$$

29.
$$\frac{6}{10} = \frac{6}{10}$$

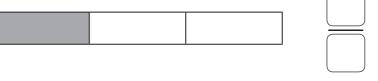
30.
$$\frac{12}{16} = \frac{12}{16}$$

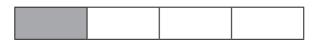
Worksheet 4 Comparing Fractions

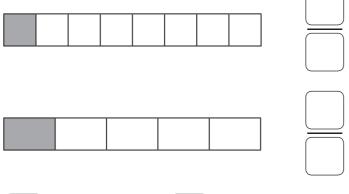
Fill in the blanks.

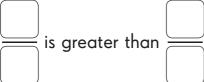

Example

2
4

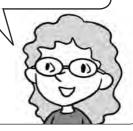

1
is less than 2
4


1.


2.



3.


Shade the bar models to show which is greater.

Example -

Like fractions have the same denominator. So you only need to compare the numerators.

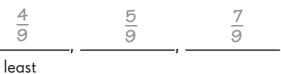
So,
$$\frac{5}{8} > \frac{3}{8}$$
.

4. $\frac{9}{12}$

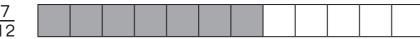
_____ is greater than _____.

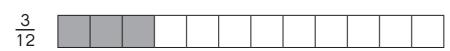
5. $\frac{5}{9}$

_____ is greater than _____.

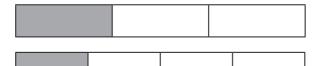

Order the fractions from least to greatest.

- Example -





6. <u>7</u>



least

Compare the fractions. Then fill in the blanks.

Example –

$$\frac{1}{3}$$
 and $\frac{1}{4}$

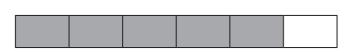
 $\frac{\frac{1}{3}}{\frac{1}{4}}$ is greater than $\frac{\frac{1}{4}}{\frac{1}{4}}$.

The fractions have the same numerator, so compare the denominators. The greater fraction is the one with the smaller denominator.

7. $\frac{2}{5}$ and $\frac{2}{7}$

_____ is greater than _____.

8. $\frac{5}{12}$ and $\frac{5}{8}$

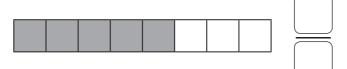

_____ is greater than _____.

9. $\frac{4}{9}$ and $\frac{4}{11}$

_____ is greater than _____.

Compare the fractions.

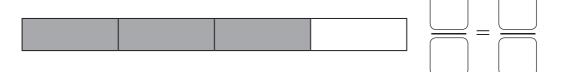
Example —



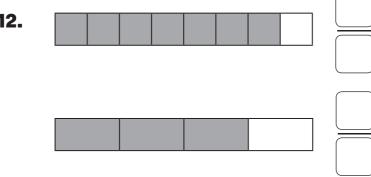
5

$$\frac{5}{6}$$
 is greater than $\frac{2}{3}$

10.



_____ is greater than _____.


11.


_____ is greater than _____.

12.

_____ is greater than _____.

13.

_____ is greater than _____.

Compare the fractions.

Example -

Which is greater, $\frac{2}{3}$ or $\frac{5}{9}$?

$$\frac{2}{3} = \frac{2 \times \boxed{3}}{3 \times \boxed{3}} = \frac{\boxed{6}}{9}$$

 $\frac{\frac{6}{9}}{9}$ is greater than $\frac{5}{9}$.

So, $\frac{\frac{2}{3}}{}$ is greater.

Change to equivalent like fractions.

14. Which is greater, $\frac{7}{12}$ or $\frac{1}{2}$?

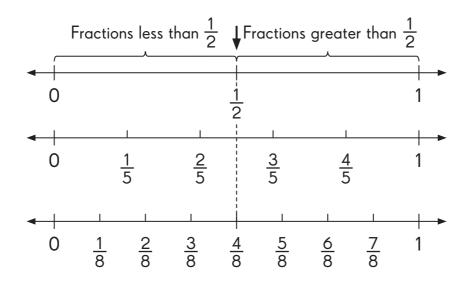
$$\frac{1}{2} = \frac{1 \times \boxed{}}{2 \times \boxed{}} = \frac{\boxed{}}{12}$$

 $\frac{7}{12}$ is greater than ______.

So, _____ is greater.

15. Which is greater, $\frac{3}{4}$ or $\frac{3}{7}$?

$$\frac{3}{4} = \frac{3 \times \boxed{}}{4 \times \boxed{}} = \frac{\boxed{}}{28}$$


$$\frac{3}{7} = \frac{3 \times \bigcirc}{7 \times \bigcirc} = \frac{\bigcirc}{28}$$

_____is greater than _____.

So, _____ is greater.

Compare. Write > or <.

Use $\frac{1}{2}$ as a benchmark.

Example

$$\frac{2}{5}$$
 $\left(< \right)$ $\frac{1}{2}$

$$\frac{7}{8}$$
 \Rightarrow $\frac{1}{2}$

So,
$$\frac{2}{5}$$
 $<$ $\frac{7}{8}$.

When you compare fractions with $\frac{1}{2}$ like this, you are using $\frac{1}{2}$ as a **benchmark**.

16. $\frac{4}{5}$ $\frac{1}{2}$

$$\frac{3}{8}$$
 $\frac{1}{2}$

So,
$$\frac{4}{5}$$
 $\frac{3}{8}$

Order the fractions from least to greatest.

$$\frac{4}{7}$$

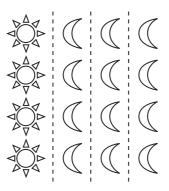
least

17. $\frac{5}{12}$, $\frac{3}{4}$, $\frac{2}{3}$

_____, ____, ____, _____, _____

18. $\frac{1}{2}$, $\frac{3}{10}$, $\frac{2}{5}$

_____, ____, ____, _____, _____


19. $\frac{3}{8}$, $\frac{3}{5}$, $\frac{3}{7}$

_____, _____, _____, _____

20. $\frac{3}{8}$, $\frac{1}{8}$, $\frac{3}{4}$

Worksheet 5 Fraction as a Whole or a Set Solve.

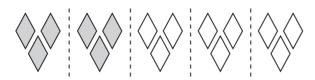
Example -

The set of shapes is divided into 4 equal groups.

_____ out of 4 groups are moons.

of the shapes are moons.

1.


The set of stars is divided into 3 equal groups.

_____ out of 3 groups is shaded.

_____ of the stars are shaded.

Solve.

2.

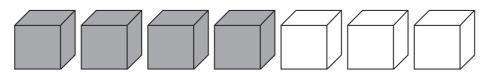
The set of diamonds is divided into 5 equal groups.

_____ out of 5 groups are shaded.

_____ of the diamonds are shaded.

Solve.

Eliza has 15 stickers in all.



- **3.** What fraction of the stickers are happy-face stickers?
- 4. What fraction of the stickers are heart-shaped stickers?

Solve.

Example -

There are ______ boxes.

_____ out of _____ 7 ___ boxes are black.

 $\frac{4}{7}$ of the boxes are black.

_____ out of _____ 7 of boxes are white.

 $\frac{3}{7}$ of the boxes are white.

7 out of 7 boxes are black or white.

$$\frac{\frac{7}{7}}{} = 1$$
 whole

The whole set of boxes are black or white boxes.

5.

There are ______ berries.

_____ out of _____ berries are blueberries.

_____ of the berries are blueberries.

_____ out of _____ berries are strawberries.

_____ of the berries are strawberries.

Complete.

Example
$$\frac{12}{12} = 1$$

6.
$$\frac{12}{12} = 1$$
 7. $\frac{5}{12} = 1$ **8.** $\frac{7}{12}$

7.
$$\frac{5}{1} = \frac{1}{2}$$

8.
$$\frac{7}{2} = \frac{1}{2}$$

9.
$$\bigcirc$$
 = 1

Complete the fractions that give 2 wholes.

Example
$$\frac{4}{2} = 2$$

11.
$$\frac{3}{3} = 2$$

13.
$$\frac{12}{}$$
 = 2

14.
$$\frac{14}{} = 2$$
 15. $\frac{16}{} = 2$

15.
$$\frac{16}{}$$
 = 2

Complete the fractions that give 3 wholes.

Example -

$$3 = \frac{15}{5}$$

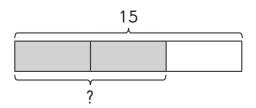
17.
$$3 = \frac{3}{3}$$

Fill in the blanks

Example -

Find $\frac{1}{2}$ of 12.

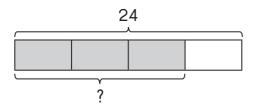
1 unit
$$\longrightarrow$$
 12 \div 2 = 6


So,
$$\frac{1}{2}$$
 of $12 = 6$.

Draw a bar model. Divide it into 2 parts. Shade 1 part.

Fill in the blanks

20. Find $\frac{2}{3}$ of 15.

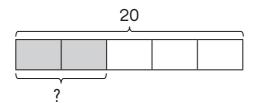


3 units — _____

1 unit
$$\longrightarrow$$
 15 \div 3 = _____

So,
$$\frac{2}{3}$$
 of 15 = _____.

21. Find $\frac{3}{4}$ of 24.


4 units ----

1 unit
$$\longrightarrow$$
 24 \div 4 = _____

3 units
$$\longrightarrow$$
 \times 3 = \longrightarrow

So,
$$\frac{3}{4}$$
 of 15 = _____.

22. Find $\frac{2}{5}$ of 20.

5 units ---

1 unit
$$\longrightarrow$$
 20 \div 5 = _____

So,
$$\frac{2}{5}$$
 of $20 =$ _____.